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Commutator properties are established for periodic splines with distinct uniformly
spaced knots (on uniform meshes) operated on by certain pseudo-differential
operators. The commutation involves the operations of multiplication by a smooth
function and application of a discrete version of orthogonal projection obtained by
using a quadrature rule (which need integrate only constants exactly) to approximate
the inner product. The results mirror a well-known super-approximation property
of splines multiplied by smooth functions. � 1999 Academic Press

1. INTRODUCTION

In this paper we establish commutator properties, or local principles, for
spaces of periodic splines operated on by pseudo-differential operators.
Examples of such relations have been used in the past to study the finite-
element method, first by Nitsche and Schatz [8, 9], and in problems such
as spline�Galerkin approximations of singular integral equations with non-
constant coefficients in [10, 12, 2, 7]. A general presentation in the context
of Toeplitz operators has been given by Hagen, Roch, and Silbermann [6].
Here our commutator property involves multiplication by a smooth func-
tion and a discrete version of orthogonal projection. Elsewhere [17] we
use the commutator property to study certain spline�qualocation methods
in the context of pseudo-differential operator equations with nonconstant

Article ID jath.1997.3276, available online at http:��www.idealibrary.com on

254
0021-9045�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.



coefficients (see [16] for the constant coefficient case). The main result is
Theorem 2.1.

2. THE MAIN RESULT

First we introduce some notation. We deal with 1-periodic splines on a
uniform mesh,

xi :=ih, i=0, ..., n&1,

with h=1�n. A periodic labelling convention allows us to write xi+n=xi

for i # Z. The space Sh consists of the 1-periodic smoothest splines (i.e.,
splines with all knots distinct) of order r�1 on this mesh; that is to say,
vh belongs to Sh if the restriction of vh to a subinterval (x i , xi+1) is a poly-
nomial of degree <r, and if vh # C r&2(R). Similarly, we let S$h (the ``test
space'') be the space of 1-periodic smoothest splines of order r$�1.

For each s # R the Sobolev norm of a 1-periodic function (or distribu-
tion) v may be defined in terms of the Fourier coefficients of v by

&v&s :=\ |v̂(0)|2+ :
k{0

|k| 2s |v̂(k)| 2+
1�2

=\ :
�

k=&�

max(1, |k| )2s |v̂(k)|2+
1�2

,

(2.1)

where

v̂(k) :=|
1

0
e&2?ikxv(x) dx, k # Z.

The Sobolev space H s may be defined as the closure of C � in the norm
& }&s . In particular, H0=L2 . (All functions will be assumed 1-periodic
unless stated otherwise.)

The L2 orthogonal projection of v # L2 onto S$h is defined by

Phv # S$h , (Phv, /)=(v, /) \/ # S$h , (2.2)

where, for v, w # L2 ,

(v, w) :=|
1

0
v(x) w(x) dx. (2.3)

We shall be concerned with a discrete variant of the orthogonal projec-
tion Ph obtained by replacing the exact integral in the inner product by a
composite quadrature rule: Thus we define

(v, w)h :=Qh(vw� ), (2.4)
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where the quadrature rule Qh is defined by

Qh(g) :=h :
n&1

i=0

:
J

j=1

|j g(h(! j+i)), (2.5)

which is the composite rule obtained by applying a scaled version of the
J-point quadrature rule

Q(g) := :
J

j=1

|j g(! j) (2.6)

to each subinterval (xi , xi+1) of the partition. The quadrature parameters
J, [!j], [|j] are assumed to satisfy

J�1, 0�!1<!2< } } } <!J<1, |j>0 for j=1, ..., J,

:
J

j=1

|j=1,

but are otherwise free. Note that Qh(g) is well defined if g # H s with s> 1
2 ,

since this condition implies that g is continuous.
The quadrature equivalent of Ph , which we shall denote by Rh (and refer

to as the discrete orthogonal projection operator), is defined by

Rhv # S$h , (Rhv, /)h=(v, /)h \/ # S$h . (2.7)

Note that Ph and Rh are both projections onto the test space S$h .
If r$=1 (i.e., the piecewise-constant case) we require that the quadrature

points should satisfy also !1>0, so that there is no quadrature point at the
points of discontinuity of the members of S$h . With this agreement, it is
known (see [4, Theorem 3] with ;=0, L0 even, r=r$) that Rh is well
defined by (2.7) for v # H s, s> 1

2 if J�2, and is also well defined if J=1
provided that !1{ 1

2 if r$ is even, or !1{0 if r$ is odd. In the following we
shall assume that the quadrature rule Q satisfies these restrictions.

Now let L denote the pseudo-differential operator of order ; # R, with
constant coefficients, defined by

Lv(x) :=(a+b) v̂(0)+a :
m{0

|m| ; e2?imxv̂(m)

+b :
m{0

(sign m) |m| ; e2?imxv̂(m), (2.8)

where a, b # R.
With these preliminaries, we are now ready to state the main result. Note

that in this result fw denotes pointwise multiplication of w by f.
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Theorem 2.1. Assume r>;+1, let $ satisfy 0�$�1, and assume that
s and t satisfy

;&1+$�s, t�r$+s&$, t�r$+;&$, s<r$+;& 1
2 , t<r& 1

2 .

(2.9)

Then for arbitrary &> 1
2 there exists C>0 such that for all vh # Sh

&Rh( fLvh)& fRhLvh &s&;�Cht&s+$ & f &} &vh&t , (2.10)

where

}=max(r$+&, r$+s&;+&), (2.11)

provided f # H}.

The theorem is proved in Section 6.

Remark 1. The theorem remains true if the spline trial space Sh is defined
to be the trigonometric polynomial space Th obtained by letting r � �.
However, it is essential that the test space S$h remains a spline space.

Remark 2. The theorem remains true with Rh replaced by Ph , and in
this case the condition r>;+1 can be replaced by r�;+1. This result
follows for s=t=;=0 from [12] Theorem 2.13 and inequality 2.13(7), by
appeal to the identity

Ph fLvh& fPhLvh=[(Ph&I ) fPh+Ph f (I&Ph)] Lvh ,

together with

&Ph f (I&Ph)&L2 � L2
=&(I&Ph) fPh&L2 � L2

�ch & f &Wr$
�

. (2.12)

The result for other values of s then follows from the inverse inequality and
standard approximation arguments. It is not known whether or not (2.10)
holds under the weaker condition r�;+1.

3. DISCUSSION

The crucial feature of the results in the theorem is that the power of h
appearing on the right-hand side of (2.10) is higher (through the term $ in
the exponent) than one would expect from the approximating power of Rh .
It is known that the result (2.12) does not hold if S$h is defined to be a
trigonometric polynomial space, rather than a spline space. The same
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negative result for trigonometric test spaces must also be expected to be
true for the results in Theorem 2.1, thus these are very much spline results,
which depend on the local character of splines. In the present paper we
shall use Fourier series arguments, which hide the local character of splines,
instead making the smoothest splines appear almost the same as trigono-
metric polynomials. It is therefore not surprising that the arguments leading
to the commutator properties are technical, rather than transparent. Perhaps
a different style of proof is possible, one that captures the local aspect of
splines in a more direct way; but at the moment we do not know of such
an argument.

It may be thought that the restriction to pseudo-differential operators
with constant coefficients as in (2.8) is a serious limitation on the results,
but this is not the case, since the results extend also to certain pseudo-
differential operators (and to linear combinations of such operators) with
nonconstant coefficients, of the form

Lv(x) :=g(x) Lv(x),

where g is 1-periodic and suitably smooth. The extension follows from the
splitting

&Rh( fLvh)& fRhLvh&s&;�&Rh(( fg) Lvh)&( fg) Rh Lvh&s&;

+& f (Rh(gLvh)& gRhLvh)&s&; ,

which leads to a result for the nonconstant case upon two applications of
Theorem 2.1.

4. PROPERTIES OF PERIODIC SMOOTHEST SPLINES

In this section we collect some properties of periodic smoothest splines
that will turn out to be useful in the sequel. Most are well known, one
(namely Lemma 4.2) is perhaps not. Other properties of periodic splines
and spline interpolation are discussed by Golomb [5].

It is known (see [13, 14, 1]) that the smoothest splines of order r, i.e.,
the elements of Sh , are characterised by the recurrence relation for the
Fourier coefficients

mrv̂(m)=+rv̂(+) if m#+, v # Sh , (4.1)

where, here and throughout,

m#+ � m&+=ln for some l # Z. (4.2)
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It is convenient to use a special basis for Sh , as introduced by Schoenberg
[15] and Golomb [5]. Let 4h be defined by

4h :={+ # Z: &
n
2

<+�
n
2= .

Then the basis [�+ : + # 4h] is defined by

�+(x) :={
1 if +=0,

(4.3)
:

m#+ \
+
m+

r

e2?imx if + # 4*h ,

where 4*h :=4h"[0]. Note that �+ # Sh , because its Fourier coefficients
satisfy the recurrence relation (4.1). If r=1 the Fourier series in (4.3) is not
absolutely convergent. Whenever the Fourier series does not converge
absolutely the sum is to be understood as the limit of the symmetric partial
sums. Of course �+ with r=1 is a piecewise-constant function, with simple
discontinuities at x=kh, k # Z. The values at the jumps are to be under-
stood as the means of the left- and right-hand limits.

There is a close relationship between �+ and the trigonometric monomial
,+ , where

,m(x) :=e2?imx, m # Z.

In particular, it follows from definition (4.3) that

�+(x+h)=e2?i+h�+(x),

so that �+ behaves under translation by h exactly like ,+ . (This property
corresponds to Eqs. (5.8) and (5.17) in Lecture 3 of [15] for exponential
Euler splines.) Also, from (4.3) we see that

�� +(&)=(�+ , ,&)=$+& for +, & # 4h ,

which leads to a simple representation for a spline vh # Sh in terms of the
basis [�+],

vh= :
+ # 4h

v̂h(+) �+ , vh # Sh . (4.4)

The spline �+ for + # 4*h can be rewritten, using (4.3), as

�+= :
�

l=&� \ +
ln+++

r

,ln++ , (4.5)
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from which follows

�+(x)=,+(x) Zr \nx,
+
n+ , x # R, + # 4h , (4.6)

where, for ! # R,

Zr(!, y) :={
1 if y=0,

(4.7)
:
�

l=&� \ y
l+ y+

r

e2?il! if 0<| y|<1.

Note that Zr(!, y) is 1-periodic in !. Note too that we have chosen to
define Zr(!, y) for y # (&1, 1), instead of restricting y to the ``natural''
domain | y|� 1

2 . The larger domain for y corresponds to extending defini-
tion (4.3) of �+ to values of + outside 4h , which will turn out to be useful
to us later.

The complex-valued function Zr(!, y) may be thought of as describing
the extent to which �+ is not the trigonometric monomial ,+ . We shall
need a number of properties of Zr , beginning with the obvious representation

Zr(!, y)=1+qr(!, y), (4.8)

where

qr(!, y) := :
l{0 \

y
l+ y+

r

e2?il!

=yrWr(!, y), if 0�| y|<1, (4.9)

with

Wr(!, y) := :
l{0

1
(l+ y)r e2?il!. (4.10)

The properties of the function Wr(!, y) have often been studied (see, for
example, [3]). If r�2 the Fourier series (4.10) is absolutely convergent,
and if also | y|�1&$ for $ # (0, 1) then

|Wr(!, y)|�2 :
�

l=1

1
(l&$)r<�.

The partial derivatives of Wr(!, y) with respect to y have a Fourier series
that converge even more rapidly, so that they too are uniformly bounded
for | y|�1&$. If r=1 the Fourier series W1(!, y) has to be understood as
the limit of the symmetric partial sums. Even in this case W1(!, y) is bounded
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independently of ! for | y|�1&$. To see this, note that the difference between
W1(!, y) and W1(!, 0) has an absolutely convergent Fourier series with a
uniformly bounded sum, while W1(!, 0) itself is just the Fourier series of
the discontinuous periodic function defined on (0, 1) by &2?i(!& 1

2). Thus
we have the following lemma.

Lemma 4.1. Let r�1. For ! # R the complex-valued function Wr(!, y) is
C� in y for | y|<1, with Wr and each of its derivatives with respect to y
being bounded uniformly in ! if y # [&1+$, 1&$], $>0.

As a special case we have

|Zr(!, y)|�C, (4.11)

for some C=C$ independent of ! and y, if | y|�1&$.
While the preceding lemma is well known, the next lemma appears to be

new. Although easy to derive, it plays a crucial role in the arguments later
in this paper, capturing an aspect of splines not shared by trigonometric
polynomials. (Formally, the trigonometric case �+=,+ can be obtained by
letting r � � in (4.5), in which case Zr(!, y) � 1. But Zr(!, y) replaced by
1 does not satisfy the property exhibited in the next lemma.)

Lemma 4.2. For ! # R and 0< y<1,

Zr(!, y&1)=\y&1
y +

r

e2?i!Zr(!, y). (4.12)

Proof. From the definition, for 0< y<1 we have

Zr(!, y&1)= :
�

l=&� \ y&1
l+ y&1+

r

e2?il!

=\ y&1
y +

r

e2?i! :
�

m=&� \ y
m+ y+

r

e2?im!

=\ y&1
y +

r

e2?i!Zr(!, y),

where we substituted l=m+1. K

Remark 3. The property (4.12) corresponds, through (4.6), to the
relation

�+&n(x)=\+&n
+ +

r

�+(x), +�0,
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which is a trivial consequence of (4.12) with an appropriately extended
domain of definition of �+ .

Finally, the following simple lemma is often useful when working with
periodic splines.

Lemma 4.3. Let :>1 and + # 4h*. There exist constants C1 and C2

independent of + such that

(a) :

m{+
m#+,

} +m }
:

�C1 }+n }
:

, (4.13)

(b) :
m#+ }

+
m }

:

�C2 . (4.14)

Proof. Putting m=ln++, we obtain

:

m{+
m#+,

} +m }
:

= :
l{0

} +
ln++ }

:

= }+n }
:

:
l{0

1
|l++�n| :

� }+n }
2

2 :
�

l=1

1
(l&1�2): ,

because |+|�n�2. For the same reason

�
m#+ }

+
m }

:

=1+ :

m{+
m#+, }

+
m }

:

�1+
1

2:&1 :
�

l=1

1
(l&1�2):=C2 . K

5. PROPERTIES OF DISCRETE ORTHOGONAL PROJECTION Rh

From the defining equation (2.7) for the operator Rh we see that

Rhv= :
+ # 4h

(v, �$+)h

(�$+ , �$+)h
�$+ ,

where we have used a property of the basis [�$+] following from (4.3),
namely that (�$+ , �$&)h=0 if +�&.
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With the aid of formula (4.6) (with r replaced by r$), it then follows that

Rhv= :
m#0

v̂(m) :
J

j=1

|j ,m�n(! j)

+ :
+ # 4*h

D&1
0 \+

n+ :
m#+

v̂(m) :
J

j=1

|j ,(m&+)�n(! j) Zr$ \! j ,
+
n+ �$+ ,

(5.1)

where

D0( y)=:
j

| j |Zr$(!j , y)|2, | y|<1. (5.2)

The expression (5.1) is a special case of [4, Eq. (3.2)]: Indeed in the
language of [4], Rhv defined by (2.7) is the ``qualocation'' approximation
to v for the special case in which the operator in the defining equation for
v is the identity.

Lemma 5.1. Under the assumption that J�2, or if J=1 that !1{ 1
2 if r$

is even, and that !1{0 if r$ is odd, D0( y) is positive and continuous on
(&1, 1).

Proof. The continuity of D0 follows from (5.2), (4.8), (4.9), and
Lemma 4.1, while the strict positivity follows from a result established in
[3], that Zr$(!, y) vanishes on [0, 1)_(0, 1) only if != 1

2 and y= 1
2 for r$

even, and only if !=0 and y= 1
2 for r$ odd. K

Further useful properties of the function D0 are expressed in:

Lemma 5.2. The function D0 defined by (5.2) is real, even, and C� for
y # (&1, 1). Moreover it has the representation

D0( y)=1+ yr$A( y), | y|<1, (5.3)

where A is C� on (&1, 1).

Proof. That D0 is real is apparent from (5.2), and that it is even follows
from (5.2) and (4.7) (with r replaced by r$). The C� nature of D0 and the
representation (5.3) follow from the definition (5.2) together with (4.8),
(4.9) and Lemma 4.1. K

The following approximation property for Rh is a special case of
[4, Theorem 2].
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Lemma 5.3. Under the assumptions of Lemma 5.1, for all _, { satisfying

_<r$& 1
2 , {> 1

2 , 0�_�{�r$

there exists C>0 such that

&Rhv&v&_�Ch{&_ &v&{ , (5.4)

if v # H{.

It may be useful to remark here that (in contrast to the thrust of [4])
we are here making no assumption on the quadrature rule Q, beyond
eliminating the known unstable rules, and requiring positive weights |j .
For that reason it would be unreasonable to expect any ``higher-order'' or
``negative-norm'' approximation properties of Rh .

In the limit r$ � � we see from (5.3) that D0( y) � 1, which is the
approximate result if the spline space S$h is replaced by the corresponding
space of trigonometric polynomials. The following relation, holding for
any finite r$, is therefore one that distinguishes the spline spaces from the
trigonometric polynomial spaces. This lemma, and the one that follows it,
will be useful to us in subsequent sections.

Lemma 5.4. For 0< y<1,

D0( y&1)=\ y&1
y +

2r$

D0( y).

Proof. With the aid of (5.2) and Lemma 4.2 we have

D0( y&1)=:
j

|j |Zr$(!j , y&1)|2

=\ y&1
y +

2r$

:
j

|j |Zr$(!j , y)|2

=\ y&1
y +

2r$

D0( y). K

Lemma 5.5. For 0< y<1 and ! # R,

D&1
0 ( y&1) Zr$(!, y&1)( y&1)r$=D&1

0 ( y) e2?i!Zr$(!, y) yr$.

Proof. This is an immediate consequence of Lemmata 4.2 and 5.4. K
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6. PROOF OF THEOREM 2.1

In the following proof we assume, in addition to the conditions (2.9),
that s�t. The result can then be shown to hold if t is replaced by any
smaller value, say t$, by appeal to the standard inverse inequality

&vh&t�Cht$&t &vh &t$ for vh # Sh , t$<t.

From definition (2.8) of the operator L, we may write

L=(a+b)J+aL++bL& , (6.1)

where a, b # R,

Jv(x) := v̂(0), (6.2)

and

L\v(x) := :
m{0

[m]; e2?imxv̂(m), (6.3)

with

[m]; :={ |m| ;

(sign m) |m| ;

in the + case,
in the & case.

(6.4)

Clearly, it is enough to prove estimate (2.10) in the theorem for the three
special cases L=J, L=L+ , and L=L& .

To prove (2.10) for case L=J, note that in this case Jvh is a constant,
and hence RhJvh=Jvh and &Jvh &s&;=|v̂h(0)|�&vh&t , so we only have to
show

&Rh f &f &s&;�Cht&s+$ & f &} . (6.5)

If s<; we can obtain (6.5) by arguing, with the aid of Lemma 5.3, that

&Rh f &f &s&;�&Rh f &f &0�Chr$ & f &r$�Cht&s+$ & f &r$ ,

since by assumption (2.9) we have t&s+$�r$. On the other hand, if s�;
we have, again using Lemma 5.3,

&Rh f &f &s&;�Chr$&s+; & f &r$�Cht&s+$ & f &r$ ,

where the second inequality follows because by (2.9) t�r$+;&$. Thus,
noting that r$<}, we see that (6.5) holds for all s and ;.

It remains to prove (2.10) for the special cases L=L\ . That is our task
in the remainder of this section.
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According to (4.4), we may write an arbitrary spline function vh # Sh in
the form

vh= :
+ # 4h

v̂h(+) �+ ,

thus

L\ vh= :
+ # 4*h

v̂h(+) L\�+ ,

and from (4.3) and (6.3) we obtain

L\ vh= :
+ # 4*h

v̂h(+) :
m#+

[m]; \+
m+

r

,m . (6.6)

With the aid of (5.1), this gives

RhL\vh= :
+ # 4*h

D&1
0 \+

n+ v̂h(+) :
m#+

[m]; \+
m+

r

_ :
J

j=1

|j ,(m&+)�n(! j) Zr$ \!j ,
+
n+ �$+ .

Finally, we multiply by

f = :
a # Z

f� (a) ,a , (6.7)

and use the Fourier expansion of �$+ , to obtain

fRhL\vh= :
a # Z

f� (a) :
+ # 4*h

D&1
0 \+

n+ v̂h(+) :
m#+

[m]; \+
m+

r

_ :
J

j=1

|j,(m&+)�n(! j) Zr$ \!j ,
+
n+ :

l#++a \
+

l&a+
r$

,l . (6.8)

On the other hand, from (6.6) and (6.7) we have

fL\vh= :
a # Z

f� (a) :
+ # 4*h

v̂h(+) :
l#++a

[l&a]; \ +
l&a+

r

,l . (6.9)

To permit the easy application of (5.1), it is convenient to replace the sum
over + in this equation by a sum over & :=(++a)(n), where m(n) denotes
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the unique integer in 4h that differs from m by a multiple of n; i.e., m(n)
(which we read as ``m mod n'') is defined by

m(n) # 4h , m(n)#m.

For +, & # 4h we note that

&=(++a)(n) � +=(&&a)(n), (6.10)

from which it follows that (6.9) may be rewritten as

fL\vh= :
a # Z

f� (a) :

&�a
& # 4h ,

v̂h((&&a)(n)) :
l#&

[l&a]; \(&&a)(n)
l&a +

r

,l .

Finally, (5.1) gives

Rh fL\vh= :

a�0
a # Z

f� (a) v̂h((&a)(n)) :
l#0

[l&a]; \(&a)(n)
l&a +

r

:
j

|j,l�n(!j )

+ :
a # Z

f� (a)

_ :

&�a
& # 4*h ,

D&1
0 \&

n+ v̂h((&&a)(n)) :
l#&

[l&a]; \(&&a)(n)
l&a +

r

_:
j

| j, (l&&)�n(! j ) Zr$ \!j ,
&
n+ �$& ,

or using again (6.10), and inserting the Fourier representation for �$& ,

Rh fL\vh= :

a�0
a # Z

f� (a) v̂h((&a)(n)) :
m#&a

[m]; \(&a)(n)
m +

r

:
j

|j ,(m+a)�n (!j )

+ :
a # Z

f� (a) :

+�&a
+ # 4*h

D&1
0 \(++a)(n)

n + v̂h(+) :
m#+

[m]; \+
m+

r

_:
j

|j, (m+a&(++a)(n))�n (!j) Zr$ \!j ,
(++a)(n)

n +
_ :

l#++a \
(++a)(n)

l +
r$

,l . (6.11)
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Our task is to compute appropriate Sobolev norms of the difference

T :=Rh fL\vh& fRhL\vh ; (6.12)

specifically, we have to show that &T&s&; satisfies estimate (2.10). It is
convenient to split T into two parts U and Y, the first containing the
``small'' values of a, which we define to be those with |a|�n�4, and a
remainder Y, containing the contributions to T from |a|>n�4. Thus

T=U+Y. (6.13)

The term U we split further: We write

U :=U1+U2 , (6.14)

where U1 contains the terms involving v̂h(+) with ++a�0, and of course
|a|�n�4, while U2 contains the terms involving v̂h(+) with ++a#0 and
|a|�n�4. Thus

U1= :
|a|�n�4

f� (a) :

+�&a
+ # 4*h

v̂h(+) :
m#+

[m]; \+
m+

r

:
j

|j

_ :
l#++a _D&1

0 \(++a)(n)
n + ,(m+a&(++a)(n))�n (! j )

_Zr$ \!j ,
(++a)(n)

n + \(++a)(n)
l +

r$

&D&1
0 \+

n+ ,(m&+)�n (!j ) Zr$ \!j ,
+
n+ \

+
l&a+

r$

& ,l . (6.15)

Fortunately, this expression can be simplified by appealing to Lemma A1
in the appendix, which gives

D&1
0 \(++a)(n)

n + ,(m+a&(++a)(n))�n (!) Zr$ \!,
(++a)(n)

n + \(++a)(n)
l +

r$

=D&1
0 \++a

n + ,(m&+)�n(!) Zr$ \!,
++a

n + \++a
l +

r$

, (6.16)

in effect allowing the awkward quantity (++a)(n) in (6.15) to be replaced
by ++a. (It is at this crucial stage that the argument fails if the spline test
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space is replaced by a space of trigonometric polynomials.) With this
substitution we have

U1= :
|a|�n�4

Va , (6.17)

where, for |a|�n�4,

Va :=f� (a) :

+�&a
+ # 4*h ,

v̂h(+) :
m#+

[m]; \ +
m+

r

:
j

|j ,(m&+)�n (!j)

_ :
l#++a

E(n, +, a, l, !j ),l ,

with, for l#++a, +{0, and +�&a,

E(n, +, a, l, !) :=D&1
0 \++a

n + Zr$ \!,
++a

n + \++a
l +

r$

&D&1
0 \+

n+ Zr$ \!,
+
n+ \

+
l&a+

r$

. (6.18)

From Definition (2.1) of the Sobolev norm, and the bound on E(n, +, a, l, !)
given by Lemma A2 in the appendix, we now obtain

&Va&2
s&;=| f� (a)|2 :

+�&a
+ # 4*h ,

:
l#++a

|l|2(s&;) } v̂h(+) :
m#+

[m]; \+
m+

r

_:
j

|j, (m&+)�n (!j) E(n, +, a, l, ! j) }
2

�| f� (a)|2 :

+�&a
+ # 4*h ,

|v̂h(+)|2 \ :
m#+

|m| ;&r |+| r+
2

_ :
l#++a

|l|2(s&;) sup
!

|E(n, +, a, l, !)| 2

�C | f� (a)|2 :

+�&a
+ # 4*h ,

|v̂h(+)|2 |+|2; ( |a| |+| r$&1+|a| r$)2

__ |++a| 2(s&;) n&2r$+ :

l{++a
l#++a,

|l|2(s&;&r$)& , (6.19)

where in the last step we used also Lemma 4.3(b).
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In (6.19) we now make use of the elementary bounds for integers a and
+, with +{0 and ++a{0,

|a| |+| r$&1+|a| r$�2 |a| r$ |+| r$&1,

and

|++a| s&;�C max(1, |a| )max(s&;, 0) |+|max(s&;, 0),

together with the bound in Lemma A4, with the parameter : in that lemma
set equal to 2(r$+;&s). Thus we obtain from (6.19)

&Va&2
s&;�C | f� (a)|2 max(1, |a| )2(r$+max(s&;, 0)) :

+ # 4*h

|v̂h(+)|2

_(|+|2(r$&1+max(s, ;))n&2r$+|+|2(r$&1+;)n2(s&;&r$)). (6.20)

From this estimate and Lemma A5 we obtain

&Va&2
s&;�C | f� (a)|2 max(1, |a| )2(r$+max(s&;, 0)) &vh&2

t

_(n2(&r$+max(r$&1+max(s, ;)&t, 0))+n2(&r$&;+s+max(r$&1+;&t, 0))),

or

&Va&s&;�C | f� (a)| max(1, |a| )r$+max(s&;, 0) &vh&t hmin(t&s+1, t&;+1, r$, r$+;&s)

�Cht&s+$ | f� (a)| max(1, |a| )r$+max(s&;, 0) &vh&t , (6.21)

because we have $�1, s�;&1+$, t&s�r$&$, t�r$+;&$.
Finally, from (6.17) we have

&U1&s&;� :
|a|�n�4

&Va&s&;

�Cht&s+$ :
|a|�n�4

| f� (a)| max(1, |a| )r$+max(s&;, 0)+&

_max(1, |a| )&& &vh&t

�Cht&s+$ \ :
|a|�n�4

| f� (a)| 2 max(1, |a| )2(r$+max(s&;, 0)+&)+
1�2

_\ :
|a|�n�4

max(1, |a| )&2&+
1�2

&vh&t

�Cht&s+$ & f &r$+max(s&;, 0)+& &vh&t ,

because &> 1
2 . Thus for the term U1 the bound in the theorem is satisfied.
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The argument for the term U2 in (6.14) is similar but easier. From (6.11)
and (6.8) we have U2=� |a|�n�4, a{0 Wa , where, for |a|�n�4 and a{0,

Wa= f� (a) v̂h(&a) :
m#&a

[m]; \&
a
m+

r

:
j

|j, (m+a)�n(!j )

_ :
l#0

K(n, a, l, ! j ) ,l ,

and

K(n, a, l, !)=$l0&D&1
0 \&

a
n+ Zr$ \!, &

a
n+ \&

a
l&a+

r$

.

By appeal to Lemma A3 we can show

&Wa&2
s&;�C | f� (a)|2 |v̂h(&a)|2

_\ :
m#&a

|m| ;&r |a| r+
2

\} an }
2r$

+ :

l{0
l#0,

|l|2(s&;) } al }
2r$

+
�C | f� (a)|2 |v̂h(&a)|2 |a|2( ;+r$) (n&2r$+n&2(r$+;&s)),

where the last step follows from Lemma 4.3b and the assumption that
s<r$+;& 1

2 . Thus

&Wa&s&;�Chmin(r$, r$+;&s) | f� (a)| |a| ;+r$&t &vh&t .

Now because a{0 and |a|�n�4,

|a| ;+r$&t�|a| r$+max(;&t, 0)�nmax(;&t, 0) |a| r$=hmin(t&;, 0) |a| r$,

so that

&Wa&s&;�Chmin(t&s+r$, t&;+r$, r$, r$+;&s) | f� (a)| |a| r$ &vh&t

�Cht&s+$ | f� (a)| |a| r$ &vh &t .

Since this is analogous to the bound in (6.21), it follows as before that

&U2 &s&;�Cht&s+$ & f &r$+& &vh &t ,

and therefore the bound in the theorem is satisfied by the term U2 .
The ``remainder'' term Y, i.e., the contribution to the difference of (6.11)

and (6.8) from the terms with |a|>n�4, may be written as

Y= :
|a|>n�4

Ya= :
|a|>n�4

(Y1, a+Y2, a+Y3, a), (6.22)
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where, for |a|>n�4, Y1, a comes from the second term of (6.11),

Y1, a :=f� (a) :

+�&a
+ # 4*h ,

D&1
0 \(++a)(n)

n + v̂h(+) :
m#+

[m]; \ +
m+

r

_:
j

| j,(m+a&(++a)(n))�n(!j ) Zr$ \!j ,
(++a)(n)

n +
_ :

l#++a \
(++a)(n)

l +
r$

,l ,

so that

&Y1, a&2
s&;=| f� (a)|2 :

+�&a
+ # 4*h

}D&1
0 \(++a)(n)

n +}
2

|v̂h(+)| 2 } :
m#+

[m]; \+
m+

r

_:
j

|j, (m+a&(++a)(n))�n(!j ) Zr$ \!j ,
(++a)(n)

n +}
2

_ :
l#++a

|l| 2(s&;) } (++a)(n)
l }

2r$

�C | f� (a)|2 :

+�&a
+ # 4*h

|v̂h(+)| 2 \ :
m#+

|m| ;&r |+| r+
2

|(++a)(n)|2(s&;)

�C | f� (a)|2 :
+ # 4*h

|v̂h(+)|2 |+| 2; n2 max(s&;, 0),

where we have used (4.11), Lemmata 5.1 and 4.3(b), noting that r$&s+;
> 1

2 and r>;+1. With the aid of Lemma A5, we then obtain

&Y 1, a &s&;�Chmin(t&;, ;&s, 0) | f� (a)| &vh&t , (6.23)

where we used the temporary assumption s�t made at the start of this sec-
tion to simplify the exponent of h. Next, Y2, a is the contribution to Ya from
(6.8),

Y2, a :=&f� (a) :
+ # 4*h

D&1
0 \+

n+ v̂h(+) :
m#+

[m]; \ +
m+

r

_:
j

| j,(m&+)�n(!j) Zr$ \!j ,
+
n+ :

l#++a \
+

l&a+
r$

,l ,
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and hence

&Y2, a&2
s&;=| f� (a)| 2 :

+ # 4*h
}D&1

0 \+
n+}

2

|v̂h(+)|2 } :
m#+

[m]; \+
m+

r

_:
j

|j,(m&+)�n(!j) Zr$ \!j ,
+
n+}

2

_ :
l#++a

max(1, |l| )2(s&;) } +
l&a }

2r$

�C | f� (a)|2 :
+ # 4*h

|v̂h(+)|2 \ :
m#+

|m| ;&r |+| r+
2

_ :
l#++a

max(1, |l| )2(s&;) } +
l&a }

2r$

.

Now, for + # 4*h ,

:
l#++a

max(1, |l| )2(s&;) } +
l&a }

2r$

=|+|2r$ :
p#+

max(1, | p+a| )2(s&;)

| p|2r$

�C |+|2r$ :
p#+

| p|2 max(s&;, 0)+|a|2 max(s&;, 0)

| p| 2r$

�C( |+|2 max(s&;, 0)+|a|2 max(s&;, 0)),

where we used Lemma 4.3(b) (twice) and s<r$+;& 1
2 . Thus

&Y2, a&2
s&;�C | f� (a)|2 :

+ # 4*h

|v̂h(+)|2 ( |+|2 max(s, ;)+|+|2; |a|2 max(s&;, 0)),

and Lemma A5 now gives

&Y2, a&2
s&;�C(n2 max(max(s, ;)&t, 0)

+n2 max(;&t, 0) |a|2 max(s&;, 0)) | f� (a)|2 &vh &t .

Thus we may write (using again t�s)

&Y2, a&s&;�Chmin(t&;, 0) |a|max(s&;, 0) | f� (a)| &vh &t . (6.24)
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Finally, Y3, a is the contribution from the first term of (6.11), thus for a�0

Y3, a :=f� (a) v̂h((&a)(n)) :
m#&a

[m]; \(&a)(n)
m +

r

:
j

|j,(m+a)�n(!j),

and hence

&Y3, a&s&;= } f� (a) v̂h((&a)(n)) :
m#&a

[m]; \(&a)(n)
m +

r

:
j

| j, (m+a)�n(!j) }
�| f� (a)| |v̂h((&a)(n))| :

m#&a

|m| ; } (&a)(n)
m }

r

�C | f� (a)| |v̂h((&a)(n))| |(&a)(n)| ;

�Cnmax(;&t, 0) | f� (a)| |v̂h((&a)(n))| |(&a)(n)| t

�Chmin(t&;, 0) | f� (a)| &vh&t . (6.25)

For a#0 we define Y3, a :=0.
Now (6.22)�(6.25) give

&Y&s&;� :
|a| >n�4

(&Y1, a&s&;+&Y2, a &s&;+&Y3, a&s&;)

�C :
|a|>n�4

(hmin(t&;, ;&s, 0)+hmin(t&;, 0) |a| max(s&;, 0)) | f� (a)| &vh&t .

Because |a|>n�4 and therefore h |a|>1�4, in the first term we may use

1�C(h |a| )max(t&s+$&min(t&;, ;&s, 0), 0),

so that

hmin(t&;, ;&s, 0)�Cht&s+$ |a|max(;&s+$, t&;+$, t&s+$, 0),

where we used the fact that h raised to a positive power is bounded above
by 1; and in the second term

1�C(h|a| )max(t&s+$&min(t&;, 0), 0),

so that

hmin(t&;, 0) |a| max(s&;, 0)�Cht&s+$ |a|max(;&s+$, t&;+$, t&s+$, s&;, $, 0).
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Thus altogether we have

&Y&s&;�Cht&s+$ :
|a| >n�4

|a|max(;&s+$, t&;+$, t&s+$, s&;, $, 0) | f� (a)| &vh&t

�Cht&s+$ & f &max(;&s+$+&, t&;+$+&, t&s+$+&, s&;+&, $+&, &) &vh &t

�Cht&s+$ & f &r$+& &vh&t ,

where the last step follows because, by (2.9), t&s+$�r$, t&;+$�r$,
;&s+$�1, s&;<r$& 1

2, and $�1. Thus the term Y in (6.13) satisfies
the bound in (2.10), and the proof of the theorem is complete. K

A. APPENDIX: MISCELLANEOUS LEMMATA

The lemmata in this appendix are used in the proof of the main theorem,
Theorem 2.1.

Lemma A1. Assume + # 4h , |a|�n�4, ! # R, ,:(x)=e2?i:x, Zr(!, y) is as
defined by (4.7), and D0( y) is as defined by (5.2). Then

D&1
0 \(++a)(n)

n + ,&(++a)(n)�n(!) Zr$ \!,
(++a)(n)

n + ((++a)(n))r$

=D&1
0 \++a

n + ,&(++a)�n(!) Zr$ \!,
++a

n + (++a)r$.

Proof. The result is immediate if (++a)(n)=++a. Suppose (++a)(n)
=++a&n. Then the complex conjugate of Lemma 5.5 may be applied
with y=(++a)�n, noting that 1

2< y� 3
4 . Alternatively, suppose (++a)(n)

=++a+n. Then the conjugate of Lemma 5.5 may be applied with y=
(++a+n)�n. Since all possibilities are thereby exhausted, the result is
proved. K

Lemma A2. Let

E(n, +, a, l, !) :=D&1
0 \++a

n + Zr$ \!,
++a

n + \++a
l +

r$

&D&1
0 \+

n+ Zr$ \!,
+
n+ \

+
l&a+

r$

,
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where + # 4h*, |a|�n�4, +� &a, and l#++a. Then there exists C>0 such
that

|E(n, +, a, l, !)|�{
C

|a| |+| r$&1+|a| r$

nr$

C
|a| |+| r$&1+|a| r$

|l| r$

if l=++a,

if l{++a.

Proof. We first prove the result for l=++a. In this case the definition
reduces to

E(n, +, a, ++a, !)=F \!,
++a

n +&F \!,
+
n+

where

F(!, y) :=D&1
0 ( y) Zr$(!, y), 0�| y|� 3

4 . (A1)

Now Lemmata 4.1, 5.1, and 5.2, together with (4.8) and (4.9), tell us that

F(!, y)=1+ yr$G(!, y), 0�| y|� 3
4 ,

where for ! # R, G(!, y) is a differentiable (indeed C�) function of y, with
the derivative with respect to y bounded uniformly in ! and y. By the
mean-value theorem, there exists % satisfying 0<%<1, (with % depending
on !, +, a, n) such that

F \!,
++a

n +&F \!,
+
n+=

a
n

�F
�y \!,

++%a
n + .

Since

�F
�y

(!, y)=r$yr$&1G(!, y)+ yr$ �G
�y

(!, y),

it follows that

}F \!,
++a

n +&F \!,
+
n+}�C } an } }

++%a
n }

r$&1

, (A2)

with C independent of !, +, a and n. With the aid of the standard inequality

( p+q)m�2m( pm+qm), p, q, m>0,
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we obtain the desired result for the case l=++a,

|E(n, +, a, ++a, !)|�C
|a| |+| r$&1+|a| r$

nr$ .

For l{++a we may write

E(n, +, a, l, !)=E1(n, +, a, l, !)+E2(n, +, a, l, !),

where

E1(n, +, a, l, !) :=\n
l+

r$

_H \!,
++a

n +&H \!,
+
n+& ,

H(!, y) :=yr$F(!, y);

and

E2(n, +, a, l, !) :=&D&1
0 \+

n+ Zr$ \!,
+
n+ +r$ _ 1

(l&a)r$&
1

lr$& .

For the first term we use

�H(!, y)
�y

= yr$&1 _y
�F(!, y)

�y
+r$F(!, y)& ,

so that from the mean-value theorem there exists % satisfying 0<%<1 such
that

|E1(n, +, a, l, !)|= }\n
l+

r$ a
n

�
�y

H \!,
++%a

n +}
�C } nl }

r$

} an } }
++%a

n }
r$&1

�C
|a|
|l| r$ ( |+| r$&1+|%a| r$&1)

�C
|a| |+| r$&1+|a| r$

|l| r$ .
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For the second term we have

|E2(n, +, a, l, !)|�C |+| r$ } 1
(l&a)r$&

1
lr$ }

=C }+l }
r$

} J \a
l+&J(0) }

where

J( y) :=
1

(1& y)r$ , y�
1
2

.

Note that under the conditions in the lemma, if l{++a then a�l� 1
2 . If

|l|�n�2 this is straightforward, since |a|�n�4, implying |a�l|�(n�4)(2�n)
= 1

2 . On the other hand, if 0<|l|<n�2 then it follows from l#++a
combined with l{++a that ++a � 4h . In turn it follows that + and a
must be of the same sign (since |++a|>|+| ), and that l must be of opposite
sign. (For example, if + and a are both positive we must have ++a>n�2,
and then l=++a&n<0 is necessary to ensure |l|<n�2.) Thus a�l<0
< 1

2 . We also note that in this case |l|=n&|++a|�n&(n�2)&(n�4)=
n�4, so that in all cases

|l|�n�4 when l{++a.

From the mean-value theorem we now have, for some % satisfying
0<%<1,

|E2(n, +, a, l, !)|=C }+l }
r$

}al J$ \%
a
l+}

=C } +l }
r$

} al }
r$

(1&%(a�l))r$+1 ,

and since the last factor is at most r$2r$+1,

|E2(n, +, a, l, !)|�C } +l }
r$

} al }�C
|+| r$&1 |a|

|l| r$ ,

where in the last step we used |+�l|�(n�2)(4�n)=2 to remove one power
of |+�l|. On combining the estimates for E1 and E2 the proof for the case
l{++a is complete. Thus Lemma A2 holds. K
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Lemma A3. Let

K(n, a, l, !) :=$l0&D&1
0 \&

a
n+ Zr$ \!, &

a
n+ \&

a
l&a+

r$

,

where |a|�n�4, and l#0. There exists C>0 such that

|K(n, a, l, !)|�{
C } an }

r$

C } al }
r$

if l=0,

if l{0.

Proof. If l=0 the definition reduces to

K(n, a, 0, !)=F(!, 0)&F \!, &
a
n+ ,

where F is defined by (A1). The result then follows from (A2). For l{0
it follows from (4.11) and Lemma 5.1 that

|K(n, a, l, !)|�C } a
l&a }

r$

�C } al }
r$

,

where the last step follows from

|l&a|�|l|&|a|�3 |l|�4,

given |l|�n, |a|�n�4. K

Lemma A4. If + # 4h , |a|�n�4 and +�&a, and if :>1, then there
exists C>0 such that

:

l{++a
l#++a,

|l|&:�Cn&:.

Proof. If ++a # 4h* then the result follows from Lemma 4.3(a). If
++a=0 the result is trivial. If ++a � 4h then the sum may be rewritten as

:

l{++a
l#++a

|l|&:= :

l{(++a)(n)
l#++a

|l| &:+|(++a)(n)|&:&|++a|&:

� :

l{(++a)(n)
l#++a

|l|&:+|(++a)(n)|&:.
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The first term is bounded by Cn&: by Lemma 4.3(a). For the second term
note that under the circumstances of the lemma and for ++a � 4h we have

(++a)(n)=++a\n,

with the + sign if + and a are both negative, and the & sign if + and a
are both positive. Thus

|(++a)(n)|=n&|++a|�n&|+|& |a|�n&
n
2

&
n
4

=
n
4

,

from which it follows that |(++a)(n)|&:�Cn&:, and the result is
proved. K

Lemma A5. For :, t # R,

:
+ # 4*h

|v̂(+)|2 |+|2:�n2 max(:&t, 0) &v&2
t .

Proof. Suppose first that :�t. Then noting that |+|�1 we use

:
+ # 4*h

|v̂(+)|2 |+|2:� :
+ # 4*h

|v̂(+)|2 |+|2t�&v&2
t .

Alternatively, suppose that :>t. Then noting that |+|<n we use

:
+ # 4*h

|v̂(+)|2 |+|2:=n2: :
+ # 4*h

|v̂(+)|2 }+n }
2:

�n2: :
+ # 4*h

|v̂(+)| 2 }+n }
2t

�n2(:&t) &v&2
t . K
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